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A B S T R A C T   

Background: Long-term exposure to fine particulate matter (PM2.5) has been associated with neurodegenerative 
diseases, including disease aggravation in Parkinson’s disease (PD), but associations with specific PM2.5 com-
ponents have not been evaluated. 
Objective: To characterize the association between specific PM2.5 components and PD first hospitalization, a 
surrogate for disease aggravation. 
Methods: We obtained data on hospitalizations from the New York Department of Health Statewide Planning and 
Research Cooperative System (2000–2014) to calculate annual first PD hospitalization counts in New York State 
per county. We used well-validated prediction models at 1 km2 resolution to estimate county level population- 
weighted annual black carbon (BC), organic matter (OM), nitrate, sulfate, sea salt (SS), and soil particle con-
centrations. We then used a multi-pollutant mixed quasi-Poisson model with county-specific random intercepts 
to estimate rate ratios (RR) of one-year exposure to each PM2.5 component and PD disease aggravation. We 
evaluated potential nonlinear exposure–outcome relationships using penalized splines and accounted for po-
tential confounders. 
Results: We observed a total of 197,545 PD first hospitalizations in NYS from 2000 to 2014. The annual average 
count per county was 212 first hospitalizations. The RR (95% confidence interval) for PD aggravation was 1.06 
(1.03, 1.10) per one standard deviation (SD) increase in nitrate concentrations and 1.06 (1.04, 1.09) for the 
corresponding increase in OM concentrations. We also found a nonlinear inverse association between PD 
aggravation and BC at concentrations above the 96th percentile. We found a marginal association with SS and no 
association with sulfate or soil exposure. 
Conclusion: In this study, we detected associations between the PM2.5 components OM and nitrate with PD 
disease aggravation. Our findings support that PM2.5 adverse effects on PD may vary by particle composition.   

1. Introduction 

Particulate matter with a diameter ≤2.5 μm (PM2.5) is a dynamic 
heterogeneous mixture that changes over time and space. The main 
components of PM2.5 include ammonium sulfate, crustal material, black 
carbon (BC), ammonium nitrate, sea salt (SS), trace element oxides, and 
others (Snider et al., 2016; van Donkelaar et al., 2019). Exposure to 

PM2.5 can contribute to ischemic heart disease, cerebrovascular disease, 
lung cancer, chronic obstructive pulmonary disease, and 
lower-respiratory infections, among others (Andersen et al., 2012; 
Anderson et al., 2012; Naghavi et al., 2017; Yang et al., 2018; Liu et al., 
2016). More recently, studies have also identified long-term PM2.5 
exposure as a potential risk factor for neurodegenerative diseases (Liu 
et al., 2016; Palacios et al., 2014; Fu et al., 2019; Shin et al., 2018; 
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Kioumourtzoglou et al., 2015b; Ritz et al., 2016; Calderón-Garcidueñas 
et al., 2016; Shi et al., 2020; Nunez et al., 2021). 

Parkinson’s disease (PD) is the second most prevalent neurodegen-
erative disease worldwide, affecting 1–2 per 1000 of the population at 
any given time (Hirsch et al., 2016; Lix et al., 2010). PD neuropathology 
is characterized by α-synuclein-containing Lewy bodies and loss of 
dopaminergic neurons in the substantia nigra, but the exact pathogen-
esis of the disease remains unclear (Dexter and Jenner, 2013; Tysnes and 
Storstein, 2017). Clinical manifestations of PD include tremor, rigidity, 
bradykinesia (Tysnes and Storstein, 2017), and a variety of non-motor 
symptoms including cognitive, neuropsychiatric, sleep, autonomic and 
sensory disorders, as well as depression, anxiety, constipation, and 
erectile dysfunction (Park and Stacy, 2009). In addition to the broad 
spectrum of clinical symptoms, disease aggravation also varies greatly 
from patient to patient (Schrag et al., 2007). 

A few epidemiological studies have investigated the association of 
PM2.5 exposure with increased PD risk (Kirrane et al., 2015; Liu et al., 
2016; Palacios et al., 2014) and disease aggravation (Lee et al., 2017; 
Kioumourtzoglou et al., 2015b; Shi et al., 2020; Nunez et al., 2021). The 
studies that assessed PM2.5 exposure and risk for PD in the Agricultural 
Health Study cohort and the Nurses’ Health Study found marginally 
positive and null associations, respectively (Kirrane et al., 2015; Palacios 
et al., 2014). In the PAGE case-control study, the association was posi-
tive only among women (Liu et al., 2016). Among US Medicare bene-
ficiaries and in data from the New York Department of Health Statewide 
Planning and Research Cooperative System (SPARCS), long-term PM2.5 
exposure was positively associated with disease aggravation (Kiou-
mourtzoglou et al., 2015b; Shi et al., 2020; Nunez et al., 2021) and in a 
cohort from Seoul, South Korea, short-term PM2.5 exposure was also 
associated with disease aggravation (Lee et al., 2017)— these studies 
used PD hospitalizations as a surrogate for disease aggravation. 
PD–PM2.5 studies, both for risk and disease aggravation, cover multiple 
geographical regions and overall present a trend for a positive associa-
tion, but some differences in the magnitude of the association are 
observed across studies. Among other factors (e.g., windows of expo-
sure, adjustment for confounders, exposure measurement error, and 
outcome definition), differences on findings could partially result from 
varying risk by PM2.5 composition, which varies in space and time (Bell 
et al., 2007; Austin et al., 2013) and can modify PM2.5 estimated health 
effects (e.g., survival (Kioumourtzoglou et al., 2015a)). Studies that 
evaluate exposure to specific PM2.5 components are essential to deter-
mine whether PM2.5 composition influences its association with neuro-
degenerative diseases. Furthermore, this information would be valuable 
in elucidating potential biological mechanisms and informative for the 
development of source-targeted PM2.5 regulations. 

In a previous study we found a positive association between one-year 
exposure to PM2.5 and disease aggravation in PD (Nunez et al., 2021). 
Here we characterized one-year exposure to six specific PM2.5 compo-
nents: BC, organic matter (OM), sulfate, nitrate, SS, and soil. We used 
first PD hospitalization as a surrogate for disease aggravation—this de-
cision is supported by clinical studies that show higher rates of hospi-
talization among PD patients relative to adults of the same age without 
PD (Oguh and Videnovic, 2012). We examined each PM2.5 component’s 
independent association with first PD hospitalizations to identify parti-
cle components in the PM2.5 mixture that are positively associated with 
aggravation of the disease. We used data on first PD hospitalizations 
from all of New York State (NYS) from 2000 to 2014 and air pollution 
estimates from previously validated models (van Donkelaar et al., 
2019). Our study adds to our understanding of the potential link be-
tween long-term exposure to PM2.5 and PD aggravation by providing 
information on the association with specific PM2.5 components. 

2. Methods 

2.1. Study population 

The New York Department of Health Statewide Planning and 
Research Cooperative System (SPARCS) gathers information on hospital 
discharges for hospitalizations and emergency department visits within 
NYS. SPARCS collects information on roughly 98% of the total hospi-
talizations in non-federal acute care facilities, regardless of insurance. 
SPARCS also contains data on patients’ residential address. Importantly, 
each patient is assigned a unique identification number at their first 
hospitalization, which allows for patient tracking over time. In this 
study, we used SPARCS data to identify first PD hospitalizations from the 
years 2000–2014. Data from 1995 to 1999 were used to identify patients 
with existing hospitalizations prior 2000. These patients were removed 
from our final dataset to reduce the probability of inclusion of patients 
with an existing PD hospitalization prior to the start of the study. We 
obtained approval to conduct the analysis from Columbia University 
Institutional Review Board. The same board waived the need for 
informed consent because of the public nature of the data. 

2.2. Outcome definition 

We extracted all first hospitalizations with International Classifica-
tion of Diseases ninth revision (ICD-9) code 332.0, which specifically 
corresponds to PD. We used hospitalizations with a primary or second-
ary discharge code for PD. Hospitalizations with a primary discharge 
code for PD may include hospital admissions for conditions directly 
related to PD, such as motor complications or cognitive and psychiatric 
impairments. Hospitalizations with a secondary discharge code for PD 
may include health conditions indirectly related (e.g., falls, infections) 
or unrelated to PD as the primary reason of hospitalization. We 
restricted our study specifically to patients’ first PD hospitalization to 
capture the crossing point to a more clinically severe stage of disease 
that requires hospitalization, which we defined as disease aggravation. 
By focusing on patients’ first hospitalization, we evaluated whether 
exposure is associated with cases developing—for the first time 
—clinical symptoms severe enough to require hospitalization. Hospi-
talizations have also been used in other studies of air pollution to assess 
PD aggravation (Kioumourtzoglou et al., 2015b; Lee et al., 2017; Shi 
et al., 2020; Nunez et al., 2021). 

2.3. Air pollution data 

Annual PM2.5, BC, nitrate, sulfate, OM, SS, and soil mass concen-
trations were predicted by well-validated air pollution prediction 
models at 1 km × 1 km grids (van Donkelaar et al., 2019). Briefly, the 
PM2.5 total mass was derived from satellite retrievals, then partitioned 
into chemical composition using a chemical transport model. The 
resulting estimates, for PM2.5 and its components, were then statistically 
fused with ground-based measurements to yield accurate continuous 
surfaces even in areas with sparse monitor density. These models 
perform well, with cross-validated R2 values ranging from 0.67 to 0.96 
with the strongest agreement for sulfate (R2 = 0.96) and nitrate (R2 =

0.90) and the lowest for OM (R2 = 0.67). Estimates for total PM2.5 mass 
have an R2 = 0.76. We estimated annual population-weighted county 
averages for each component and total PM2.5 as follows: first, we aver-
aged the predicted annual concentrations over all grids within a county 
subdivision (minor civil county division, e.g., towns and townships), 
then calculated a county average where county subdivisions with larger 
populations held a greater weight. Lastly, we scaled concentrations by 
dividing by the respective component’s standard deviation (SD) to 
present effect estimates of linear associations per one SD increase and 
facilitate comparability of estimates across components. We assigned 
exposures based on the patients’ county of residence and year of first 
hospitalization. 
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2.4. Potential confounders 

In our analysis, we used annual counts of PD first hospitalizations per 
county, that is, the unit of analysis is county-year. As a result, potential 
confounders can only be variables that vary temporally or geographi-
cally and that co-vary both with PD first hospital admission counts 
(outcome) and PM2.5 component concentrations (exposure). Our study 
design is at the county level; thus, individual-level variables cannot act 
as confounders. 

To account for potential confounding by factors varying across 
counties, in our models we included county-specific socioeconomic 
status (SES) variables obtained from the US Census Bureau and the 
American Community Survey for the years 2000, 2004–2014. For years 
without available data (2001–2003), we interpolated measurements 
using a generalized additive model with a penalized spline for year to 
allow for nonlinear time trends. Data included annual median household 
income, percent of residents below poverty, percent of residents without 
a high school degree, and racial/ethnic distribution (proportion of 
White, Asian, Black, and Hispanic residents). To improve SES charac-
terization, we also included annual county-level smoking prevalence 
and percent obesity data which we obtained from the Behavioral Risk 
Factor Surveillance System. In addition to SES variables, we also 
adjusted for urbanization level. We used the 2013 six-level urban-rural 
classification scheme for counties developed by the National Center for 
Health Statistics (NCHS) (Ingram and Franco, 2014). We reduced the six 
levels to a four-level classification by combining small and medium 
metropolitan areas into one level, and the two most rural levels into a 
single level. In summary, from most urban to rural, the four urbanization 
levels are: 1) “central metro”: counties that encompass the largest 
principal city of a metropolitan area; 2) “fringe metro”: counties that do 
not include principal metropolitan cities (both central and fringe metro 
have a population ≥1 million); 3) “metro”: small and medium metro-
politan areas with a population of ≤999,999; and 4) “rural”: micro-
politan or non-metropolitan counties (Ingram and Franco, 2014). 

To account for potential temporal confounding, we adjusted our 
models for long-term time trends using calendar year and summer and 
winter mean temperatures. Data on daily mean temperature were ob-
tained from the North American Land Data Assimilation System at a 1/ 
8th-degree grids (Cosgrove et al., 2003). We calculated 
population-weighted monthly mean temperatures at the county level 
from daily temperatures over all grids within a county, then averaged 
June–August and December–February estimates to obtain the summer 
and winter mean temperatures, respectively, for each year. 

Furthermore, in sensitivity analyses, we adjusted for total PM2.5 mass 
concentration as a potential confounder. By adjusting for total PM2.5 
mass, we accounted for PM2.5 components that correlated both with 
other PM2.5 components and the outcome (Mostofsky et al., 2012). 

2.5. Statistical analysis 

To identify harmful PM2.5 components, we ran a multi-pollutant 
model that included all PM2.5 components simultaneously—BC, ni-
trate, OM, sulfate, soil, and SS. The multi-pollutant model allowed us to 
evaluate if annual county-wide increases in each specific component are 
associated with PD first hospitalization rates, while adjusting for the 
other PM2.5 components. 

We used a log-linear model to estimate the ratio of the rate of PD first 
hospitalizations across different levels of county-level PM2.5 component 
concentrations. Specifically, we used a Poisson generalized additive 
mixed model with a log link and a quasi-likelihood to allow for potential 
overdispersion in the outcome. We used county-specific random in-
tercepts to account for within-county correlated outcome observations 
over time and included county population size as an offset term to ac-
count for differences in population size across counties. Lastly, we 
allowed for nonlinear exposure–outcome relationships. After adjust-
ment for both spatial and temporal factors (SES, urbanization, calendar 

year, and temperature), we assumed that variations in the PM2.5 
component concentrations were random with respect to other risk fac-
tors for PD aggravation; under this assumption, our models should 
provide unbiased estimates of the effects of one-year exposure to PM2.5 
components. 

We followed a rigorous process to avoid potential model mis-
specification. We first included all terms (PM2.5 components and po-
tential confounders) linearly in the model. Then, we used penalized 
splines for all continuous covariates to allow for nonlinear confounding. 
After we identified the nonlinearities in confounders, we included a 
penalized spline for each of the PM2.5 components to comprehensively 
characterize the exposure–response relationships and identify potential 
deviations from linearity. We used the generalized cross-validation cri-
terion to select the optimal degrees of freedom (df) in the exposur-
e–response curve. Relationships with estimated df (edf) > 1 are 
considered nonlinear and those with edf = 1 linear. We report the linear 
estimates for all PM2.5 components and also the exposure–response 
curve for those components for which we detected nonlinearity. 

2.6. Sensitivity analysis 

Correlation among PM2.5 components may result in collinearity 
when including them simultaneously in a regression. Thus, to assess the 
robustness of the multi-pollutant model and the stability of our results, 
we conducted a sensitivity analysis to further evaluate the exposur-
e–response relationship of each component with the outcome. To this 
end, we ran separate models for each PM2.5 component. The single- 
pollutant models included only 1 PM2.5 component (BC, nitrate, sul-
fate, OM, SS, or soil) but, in addition to the other confounders, were 
adjusted for total PM2.5 mass concentration using the population- 
weighted county-year PM2.5 average. To build the single-pollutant 
models (total of six models), we followed the same steps as in the 
main analysis. 

Additionally, to reduce potential PD case status misclassification, i. 
e., reduce the probability that the cases we included in analyses were not 
PD cases, we conducted a sensitivity analysis that included only patients 
that had at least two hospitalizations with a PD diagnosis. The year of 
the first hospitalization was used to assign exposure (as in the main 
analysis) and the second PD hospitalization only to verify the PD diag-
nosis, that is, hospitalization counts were obtained based on the number 
of patients with at least two hospitalizations. To build this model, we 
followed the same steps as in the main analysis to identify potential 
nonlinearities. 

For our analyses, we present the linear associations as rate ratios 
(RR) per one SD increase in the annual concentration of a given PM2.5 
component. For the components with non-linear associations, we also 
present the entire exposure–response curve. All analyses were per-
formed using the R Statistical Software version 3.6.1 (Foundation for 
Statistical Computing, Vienna, Austria). 

3. Results 

3.1. Study population characteristics 

We included data from all 62 NYS counties. The annual average 
count of PD first hospitalizations per county was 212 with a SD of 354. 
We observed 197,545 first PD hospitalizations (either as primary or 
secondary diagnoses) over the 15-year period. First hospitalization 
counts per county and year are shown in Supplemental Fig. S.1. In 
summary, the most common primary diagnosis category was diseases of 
the circulatory system (14.1%), which includes cardiovascular diseases. 
Combined PD and other disease of the nervous system were the second 
most common category (11.7%), of which 66.2% were specifically PD 
primary diagnoses. Overall, first hospitalizations with a primary diag-
nosis of PD accounted for 7.8% of the total hospitalizations (Fig. S2). Of 
the total cases, 46.5% were females, and 79.0% were ≥70 years old. 
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Across counties, the mean age (SD) at first hospitalization was 76.9 
(10.6) years. Descriptive statistics for the outcome and covariates are 
presented in Table 1. 

3.2. PM2.5 component characteristics 

The summary statistics and distributions for PM2.5 components are 
presented in Table 1. On average, we observed the highest mass con-
centrations for OM and lowest for SS. OM and sulfate made up most of 
the annual PM2.5 total mass (35.4% and 30.9% on average, respec-
tively). We observed variation in the concentrations of components 
across counties, as well as across years—patterns varied slightly from 
county to county (Supplemental Fig. S.3). The Spearman correlation 
coefficients among components ranged from 0.36 to 0.78 (Fig. 1). We 
observed the highest correlation between soil and nitrate (0.78), fol-
lowed by sulfate and nitrate (0.69), then sulfate and soil (0.68). Sulfate 
and nitrate had the strongest correlations with PM2.5, 0.88 and 0.81 
respectively. 

3.3. Exposure–response relationships 

In the multi-pollutant model, we found that a one SD increase in OM 

or nitrate concentration was associated with a 6% increase in annual PD 
first hospitalization rate (RR = 1.06, 95% CI: 1.04–1.09 and 1.06, 95% 
CI: 1.03–1.10, respectively). In the case of BC, we found an inverse as-
sociation (RR = 0.96, 95%CI: 0.94–0.99), a marginal association for SS 
(RR = 1.02, 95%CI: 1.00–1.03) and no association for soil, and sulfate 
(Fig. 2). When we examined for potentially nonlinear relationships, we 
found deviations from linearity in the BC–PD and sulfate–PD associa-
tions. The nonlinear sulfate–PD association was also null and for BC 
negative only at high concentrations of BC (above 1.3 μg/m3, i.e., the 
96th percentile of the BC concentration distribution; Fig. 3). 

3.4. Sensitivity analysis 

As a sensitivity analysis, we ran single-pollutant models adjusted for 
PM2.5 mass concentration and other potential confounders. Overall, the 
results were consistent with the multi-pollutant model with nitrate and 
OM having a positive association and sulfate and BC deviating from 
linearity. However, in the single-pollutant model the SS–PD association 
was null, and the nonlinear sulfate–PD relationship marginally negative 
(Fig. 2, and Table S1). 

We also ran a second sensitivity analysis to verify PD cases including 
only first hospitalization counts of patients that have at least two hos-
pitalizations with a PD diagnosis (N = 18,391). In this sensitivity anal-
ysis, we continued to see a negative association with BC and a positive 
association with nitrate and OM. The results for sulfate, soil, and SS were 
null supporting the main analysis (Table S1, and Fig. S.4). 

4. Discussion 

In this study we aimed to identify specific PM2.5 components that are 
associated with clinical disease aggravation in PD, using a patient’s first 
hospitalization as a surrogate. We characterized the exposure–response 
curves for six PM2.5 components (OM, BC, nitrate, sulfate, SS and soil) 
that constitute a large proportion of the total annual PM2.5 mass con-
centration in NYS. In summary, we found that an increase in county- 
level annual OM and nitrate concentrations were independently asso-
ciated with increased first PD hospitalization rates. For BC, we unex-
pectedly found a nonlinear negative association above the 96th 
concentration percentile, while for sulfate and soil the results were null. 
The SS–PD association was only marginally positive in the main analysis 
but null in all sensitivity analyses. Our results for BC, nitrate, and OM 

Table 1 
Mean, standard deviation, and inter-quartile range for Parkinson’s disease first 
hospitalization counts, PM2.5 components’ concentration, and covariates. 
Summary statistics are based on annual per county (New York State) averages 
from 2000 to 2014.   

Mean (St 
Dev) 

Min/ 
Max 

25% Median 75% 

Outcome 
PD 212.8 

(354.0)  
34.0 61.5 194.7 

Female 99.3 (167.3)  15.0 28.0 92.0 
Male 114.2 

(188.3)  
19.0 34.0 103.0 

<70 years 45.4 (81.7)  6.0 14.0 38.0 
≥70 years 168.3 

(279.6)  
27.7 48.0 153.2 

Exposure (μg/m3) 
PM2.5 8.16 (2.30) 4.16/ 

17.4 
6.92 8.28 9.76 

Black Carbon 0.66 (0.24) 0.28/ 
1.72 

0.51 0.59 0.71 

Nitrate 0.96 (0.33) 0.32/ 
2.17 

0.73 0.91 1.14 

Organic Matter 2.87 (0.67) 1.56/ 
5.97 

2.36 2.74 3.30 

Sulfate 2.51 (0.87) 1.05/ 
5.27 

1.79 2.41 3.09 

Soil 0.29 (0.10) 0.09/ 
0.75 

0.22 0.28 0.33 

Sea Salt 0.26 (0.16) 0.07/ 
1.26 

0.15 0.21 0.32 

Covariates 
Median income (×

$1000)  
49.1 (12.60)  41.3 45.7 52.4 

Percent below poverty 12.9 (4.10)  10.4 12.6 14.9 
Percent w/o high school 18.1 (7.3)  12.8 17.3 22.2 
Percent smoking 

prevalence 
22. (3.9)  20.7 23.6 26.1 

Percent obesity 25 (4.5)  22.3 25.4 27.8 
Percent Hispanic 6.5 (8.6)  1.9 2.9 6.2 
Percent White not 

Hispanic 
83.6 (16.8)  80.3 90.2 94.0 

Percent Black not 
Hispanic 

5.7 (6.3)  1.4 3.4 7.5 

Percent Asian not 
Hispanic 

2.2 (3.4)  0.5 0.9 2.2 

Summer mean temp. 
(oC) 

20.2 (1.5)  19.2 20.2 21.1 

Winter mean temp. (oC) − 3.1 (2.5)  − 4.9 − 3.3 − 1.5  

Fig. 1. Correlations among PM2.5 components. Spearman correlation co-
efficients were estimated from the scaled annual population-weighted county 
average concentrations from 2000 to 2014 in all counties across New 
York State. 
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were robust to the sensitivity analyses. 
The BC component of PM2.5 consists of soot, charcoal, char, and 

other light absorbing refractory matter. BC is mainly associated with 
traffic-related pollution in urban settings and is concentrated next to 
busy roads and highways (Tomasi et al., 2017). Although the health 
impacts of BC on cognition have been extensively studied (Power et al., 
2011; Suglia et al., 2008; Colicino et al., 2016; Clifford et al., 2016), its 
association with neurodegenerative disorders, such as PD, is not as well 
characterized. A study by Toro et al. (2019) is the only other epidemi-
ological study that has evaluated the association between long-term BC 
exposure and PD. This study was a case-control analysis in the 
Netherlands based on residence-level exposure and the authors reported 
no association. Chen et al. (2017) examined the association between 
residential proximity to road and clinical diagnosis of PD in an Ontario 
population cohort and also found no association. However, two studies 
in Denmark and Taiwan have linked other traffic-related pollutants 
(nitrogen oxides and carbon monoxide) to risk of PD (Ritz et al., 2016; 
Lee et al., 2016). In NYS, we found an unexpected association between 
annual BC exposure and PD first hospitalizations; for most of the BC 
distribution the association was null but became protective at high 
concentrations, i.e., above the 96th percentile of the BC distribution 
(~1.3 μg/m3). This finding is unexpected and we are unable to explain it 

after assessing potential sources of bias and plausible biological 
pathways. 

In the case of the PM2.5 component nitrate, we estimated a consis-
tently positive nitrate–PD association. Nitrate is mainly a secondary 
particle found in the atmosphere in the form of ammonium nitrate 
(Tomasi et al., 2017). Although globally agricultural activities are 
considered major source of ammonium nitrate, in urban sites, traffic is 
suggested as the primary source (Zhou et al., 2019). In urban New York, 
up to 99% of airborne nitrate has been traced back to traffic emissions 
(Zhou et al., 2019; Sun et al., 2014; Shon et al., 2012). Compared to BC, 
the adverse health effects resulting from nitrate exposure have been less 
explored. Three studies have linked nitrate exposure to all-cause mor-
tality (Ostro et al., 2007; Cao et al., 2012; Hoek et al., 2000) and one to 
cardiovascular- and respiratory-related mortality (Cao et al., 2012). van 
Wijngaarden et al., 2021 evaluated nitrate’s association with PD hos-
pitalizations in six NYS urban centers but found no association. In our 
study, we found a consistent increase in annual PD first hospitalization 
rates related to increases in annual nitrate concentrations at the county 
level. Although there is no previous evidence indicating an association 
between nitrate exposure and disease aggravation in PD, Ritz et al. 
(2016) and Lee et al. (2016) linked nitrogen oxides and carbon mon-
oxide, both traffic-related pollutants, to risk for PD. 

The OM component of PM2.5 is itself a highly complex mixture of 
primary and secondary organic particles that includes hundreds of 
compounds such as organic carbon, polycyclic aromatic hydrocarbons 
(PAH), alkanes, and fatty acids (Jacobson et al., 2000)—composition 
may differ from region to region as well. Some OM compounds have 
known toxicity, for example PAHs are known carcinogens and immu-
nosuppressants (Abdel-Shafy and Mansour, 2016), but the health effects 
of the wide variety of organic compounds present in PM2.5 remain 
largely uncharacterized (Jacobson et al., 2000). OM constitutes a large 
percentage of PM2.5 in some regions, including NYS; however, the 
contribution of OM to the adverse effects of PM2.5 on the nervous system 
is still largely unknown. Some studies have linked prenatal and postnatal 
exposure to PAHs with neurodevelopmental disturbances, impaired 
learning and memory deficits in children (Peterson et al., 2015), in-
flammatory responses in vitro and in vivo (Den Hartigh et al., 2010), and 
degenerative disease-like syndromes in zebrafish (Gao et al., 2015). In 
our study, we found a consistently positive association between OM 
exposure and disease aggravation in PD. Given its high neurotoxic po-
tential, more studies evaluating its association with neurodegenerative 
diseases, such as PD, are warranted. 

Sulfate is mainly a secondary particle found in the atmosphere in the 
form of ammonium sulfate. Sulfate is mostly regionally transported in 
the summer (e.g., from coal power plant emissions upwind from NYS). 
Similarly to BC, sulfate is one of the most studied PM2.5 components in 
epidemiological studies. Various studies have linked sulfate exposure 
with adverse respiratory and cardiovascular effects, as well as mortality 
(Pope III et al., 2007; Lepeule et al., 2012; Schwartz et al., 1996; Chen 
et al., 2018; Jones et al., 2015; Brook et al., 2007; Ito et al., 2011; Gwynn 
et al., 2000; Atkinson et al., 2015). Only one study estimated sulfate 
effects on hospitalizations for neurodegernative disorders and found a 
positive association, however, the association was observed when Alz-
heimer’s disease, PD, and dementia were combined into a single 
outcome; in PD-specific models the estimated association was null (van 
Wijngaarden et al., 2021). In our study, we found no association be-
tween sulfate exposure and PD disease aggravation in the main analysis 
and a marginally negative association in the single-pollutant model, 
which is likely to result from the high correlation between sulfate and 
PM2.5, since this model was adjusted for PM2.5. 

4.1. Strengths and limitations 

Disease aggravation in PD varies among patients, but the drivers of 
such variation are still largely unknown (Schrag et al., 2007)—our study 
address this knowledge gap. Furthermore, PM2.5 exposure has been 

Fig. 2. Linear associations between one-year exposure to each PM2.5 compo-
nent and first Parkinson’s disease (PD) hospitalizations in New York State 
(2000–2014). The multi-pollutant model (orange) included all PM2.5 compo-
nents and the single-pollutant models (black) included a single PM2.5 compo-
nent and were adjusted for total PM2.5 mass. Both models were adjusted for 
potential temporal and geographical confounders. The effect estimates corre-
spond to the rate ratios of first PD hospitalization per one standard deviation 
increase in annual PM2.5 component concentrations. Bars represent 95% con-
fidence intervals. (For interpretation of the references to colour in this figure 
legend, the reader is referred to the Web version of this article.) 
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identified as a potential risk factor for PD and other health outcomes, but 
little is actually known about whether this association is influenced by 
PM2.5 composition. Here, we evaluated one-year exposure to six PM2.5 
components to estimate single-pollutant associations with disease 
aggravation in PD. Our study also covers a geographical area that en-
compasses both urban and rural locations, as well as a diverse popula-
tion (SPARCS includes information on hospitalizations of all ages and 
independently of health insurance). Finally, we used flexible models that 
allowed us to test both linear and nonlinear associations to better 
characterize the exposure–response relationships. 

Our study also has a number of limitations. Primarily, we did not 
have data on non-cases to perform an individual-level time-to-event 
analysis. Instead, our analysis is at the county level. Although we have a 
smaller number of data points than a traditional daily time series study, 
we also have many more events per unit of analysis. The fact that we 
were able to detect statistically significant associations indicates that 
any impact on statistical power due to the limited number of county- 
years in our analysis is likely small. Another limitation is that the vari-
ability of county-wide averages for some of the examined PM2.5 com-
ponents is quite low; this could also have impacted our statistical power 
and hindered our ability to detect associations. We used predicted PM2.5 
component concentrations to assign county-level exposures based on 
county of residence, which is expected to result in some exposure 
measurement error; however, the prediction models have good predic-
tive accuracy (van Donkelaar et al., 2019) and are spatially resolved to 
capture county-level population-wide exposures. The cross-validated R2 

varied by PM2.5 component; we would thus expect more error for OM as 
it is the component with the lowest R2. In the case of components with 
high spatial heterogeneity, such as BC, a county-wide average may 
inadequately reflect individual exposures. Previous studies indicate this 
bias is likely towards the null (Kioumourtzoglou et al., 2014; Hart et al., 
2015; Wu et al., 2019). Although the PM2.5 components in this study 
account for a large portion of the total PM2.5 mass, they do not capture 
all PM2.5 components. For instance, metals—which account for a small 
percent of total PM2.5 mass—were not evaluated in this study but have 
been previously linked to PD (Finkelstein and Jerrett, 2007; Willis et al., 

2010). Lastly, first hospitalizations data is likely to miss a number of the 
total cases of PD aggravation and potentially misclassify some non-PD 
related hospitalizations as aggravation episodes. However, although 
first hospitalization is not a specific marker of disease aggravation, it 
captures a significant number of cases entering a severe stage of the 
disease as indicated in clinical studies of PD hospitalizations (Oguh and 
Videnovic, 2012). To our knowledge there is paucity on data on clinical 
disease aggravation for PD, with specific measurements or scores of 
aggravation, from large cohorts that live over large geographical areas 
to allow for proper exposure contrasts. 

5. Conclusion 

We characterized the independent associations between exposure to 
specific PM2.5 components and PD aggravation. We found positive as-
sociations for some— but not all—PM2.5 components, which may 
explain some of the variability in total PM2.5 estimates reported across 
previous studies from different geographical regions. Specifically, we 
identified nitrate and OM as PM2.5 components positive associated with 
PD. Overall, our findings support that PM2.5 compositional profile may 
play a role in its association with PD disease aggravation. 
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Fig. 3. Nonlinear associations between one- 
year exposure to black carbon (BC, left) or 
sulfate (right) and first Parkinson’s disease 
(PD) hospitalizations in New York State 
(2000–2014). The multi-pollutant model 
(top) included all PM2.5 components (BC, 
sulfate, nitrate, organic matter, sea salt, soil) 
whereas the single-pollutant models (bot-
tom) included one pollutant at a time and 
are adjusted for total PM2.5 mass. Both 
models are adjusted for potential temporal 
and geographical confounders. The solid 
black lines indicate the exposure–response 
curve between the component and first PD 
hospitalizations as rate ratio relative to the 
mean BC (0.66 μg/m3) or sulfate (2.51 μg/ 
m3) concentration. The gray shaded areas 
correspond to 95% confidence bands. The 
density plots show the BC and sulfate con-
centration distributions respectively.   
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Appendix A. Supplementary data 

Supplementary data to this article can be found online at https://doi. 
org/10.1016/j.envres.2021.111554. 
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